Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493352

RESUMO

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.

2.
Nat Commun ; 15(1): 2445, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503728

RESUMO

Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.


Assuntos
Arabidopsis , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Imagem Individual de Molécula/métodos , Elétrons
3.
Methods Mol Biol ; 2672: 377-385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335490

RESUMO

Labeling of the nucleolus in Arabidopsis thaliana can be achieved by incorporation of 5'-ethynyl uridine (EU) into bulk RNA. Although EU does not selectively label the nucleolus, the abundance of ribosomal transcripts results in the predominant accumulation of the signal in the nucleolus. Ethynyl uridine has the advantage of being detected via Click-iT chemistry providing a specific signal and low background. While the protocol presented here employs fluorescent dye and allows visualization of the nucleolus by microscopy, this method can also be used for other downstream applications. Though we tested nucleolar labeling only in A. thaliana, in principle it can be applied to other plant species.


Assuntos
Nucléolo Celular , RNA , Uridina/metabolismo , RNA/metabolismo , Nucléolo Celular/metabolismo , Microscopia , Ribossomos/metabolismo
4.
New Phytol ; 234(5): 1891-1900, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278223

RESUMO

Plant protoplasts are generated by treatment with digestion enzymes, producing plant cells devoid of the cell wall and competent for efficient polyethylene glycol mediated transformation. This way fluorescently tagged proteins can be introduced to the protoplasts creating an excellent system to probe the localization and function of uncharacterized plant proteins in vivo. We implement the method of laser microirradiation to generate DNA lesions in Arabidopsis thaliana, which enables monitoring the recruitment and dynamics of the DNA repair factors as well as bimolecular fluorescence complementation assay to test transient, conditional interactions of proteins directly at sites of DNA damage. We demonstrate that laser microirradiation in protoplasts yields a physiological cellular response to DNA lesions, based on proliferating cell nuclear antigen (PCNA) redistribution in the nucleus and show that factors involved in DNA repair, such as MRE11 or PCNA are recruited to induced DNA lesions. This technique is relatively easy to adopt by other laboratories and extends the current toolkit of methods aimed to understand the details of DNA damage response in plants. The presented method is fast, flexible and facilitates work with different mutant backgrounds or even different species, extending the utility of the system.


Assuntos
Arabidopsis , Reparo do DNA , Arabidopsis/genética , Arabidopsis/metabolismo , DNA , Dano ao DNA , Lasers , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas
5.
Plant Physiol ; 186(4): 1893-1907, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618100

RESUMO

The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Replicação do DNA , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myb/genética , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Genoma de Planta , Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Cell Sci ; 134(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350964

RESUMO

Analysis of histone variants and epigenetic marks is dominated by genome-wide approaches in the form of chromatin immunoprecipitation-sequencing (ChIP-seq) and related methods. Although uncontested in their value for single-copy genes, mapping the chromatin of DNA repeats is problematic for biochemical techniques that involve averaging of cell populations or analysis of clusters of tandem repeats in a single-cell analysis. Extending chromatin and DNA fibers allows us to study the epigenetics of individual repeats in their specific chromosomal context, and thus constitutes an important tool for gaining a complete understanding of the epigenetic organization of genomes. We report that using an optimized fiber extension protocol is essential in order to obtain more reproducible data and to minimize the clustering of fibers. We also demonstrate that the use of super-resolution microscopy is important for reliable evaluation of the distribution of histone modifications on individual fibers. Furthermore, we introduce a custom script for the analysis of methylation levels on DNA fibers and apply it to map the methylation of telomeres, ribosomal genes and centromeres.


Assuntos
Metilação de DNA , Microscopia , Cromatina/genética , Imunoprecipitação da Cromatina , DNA/genética , Metilação de DNA/genética
7.
Ecol Evol ; 11(13): 8754-8767, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257925

RESUMO

Altered copy number of certain highly repetitive regions of the genome, such as satellite DNA within heterochromatin and ribosomal RNA loci (rDNA), is hypothesized to help safeguard the genome against damage derived from external stressors. We quantified copy number of the 18S rDNA and a pericentromeric satellite DNA (Msat-160) in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone (CEZ), an area that is contaminated by radionuclides and where organisms are exposed to elevated levels of ionizing radiation. We found a significant increase in 18S rDNA and Msat-160 content in the genomes of bank voles from contaminated locations within the CEZ compared with animals from uncontaminated locations. Moreover, 18S rDNA and Msat-160 copy number were positively correlated in the genomes of bank voles from uncontaminated, but not in the genomes of animals inhabiting contaminated, areas. These results show the capacity for local-scale geographic variation in genome architecture and are consistent with the genomic safeguard hypothesis. Disruption of cellular processes related to genomic stability appears to be a hallmark effect in bank voles inhabiting areas contaminated by radionuclides.

9.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008793

RESUMO

Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.


Assuntos
Arabidopsis/metabolismo , Telomerase/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Processamento Pós-Transcricional do RNA/genética , Ribossomos/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Transcrição Gênica
10.
Plant J ; 105(6): 1534-1548, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314374

RESUMO

Arabidopsis thaliana 45S ribosomal genes (rDNA) are located in tandem arrays called nucleolus organizing regions on the termini of chromosomes 2 and 4 (NOR2 and NOR4) and encode rRNA, a crucial structural element of the ribosome. The current model of rDNA organization suggests that inactive rRNA genes accumulate in the condensed chromocenters in the nucleus and at the nucleolar periphery, while the nucleolus delineates active genes. We challenge the perspective that all intranucleolar rDNA is active by showing that a subset of nucleolar rDNA assembles into condensed foci marked by H3.1 and H3.3 histones that also contain the repressive H3K9me2 histone mark. By using plant lines containing a low number of rDNA copies, we further found that the condensed foci relate to the folding of rDNA, which appears to be a common mechanism of rDNA regulation inside the nucleolus. The H3K9me2 histone mark found in condensed foci represents a typical modification of bulk inactive rDNA, as we show by genome-wide approaches, similar to the H2A.W histone variant. The euchromatin histone marks H3K27me3 and H3K4me3, in contrast, do not colocalize with nucleolar foci and their overall levels in the nucleolus are very low. We further demonstrate that the rDNA promoter is an important regulatory region of the rDNA, where the distribution of histone variants and histone modifications are modulated in response to rDNA activity.


Assuntos
DNA de Plantas/genética , DNA Ribossômico/genética , Epigênese Genética/genética , Arabidopsis/genética , Nucléolo Celular/genética , Núcleo Celular/genética , DNA de Plantas/metabolismo , DNA Ribossômico/metabolismo , Marcadores Genéticos/genética , Variação Genética , Histonas/genética , Histonas/metabolismo , Raízes de Plantas/metabolismo , Transcrição Gênica
11.
Plant J ; 106(1): 56-73, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368779

RESUMO

Histone chaperones mediate the assembly and disassembly of nucleosomes and participate in essentially all DNA-dependent cellular processes. In Arabidopsis thaliana, loss-of-function of FAS1 or FAS2 subunits of the H3-H4 histone chaperone complex CHROMATIN ASSEMBLY FACTOR 1 (CAF-1) has a dramatic effect on plant morphology, growth and overall fitness. CAF-1 dysfunction can lead to altered chromatin compaction, systematic loss of repetitive elements or increased DNA damage, clearly demonstrating its severity. How chromatin composition is maintained without functional CAF-1 remains elusive. Here we show that disruption of the H2A-H2B histone chaperone NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) suppresses the FAS1 loss-of-function phenotype. The quadruple mutant fas1 nap1;1 nap1;2 nap1;3 shows wild-type growth, decreased sensitivity to genotoxic stress and suppression of telomere and 45S rDNA loss. Chromatin of fas1 nap1;1 nap1;2 nap1;3 plants is less accessible to micrococcal nuclease and the nuclear H3.1 and H3.3 histone pools change compared to fas1. Consistently, association between NAP1 and H3 occurs in the cytoplasm and nucleus in vivo in protoplasts. Altogether we show that NAP1 proteins play an essential role in DNA repair in fas1, which is coupled to nucleosome assembly through modulation of H3 levels in the nucleus.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Instabilidade Genômica/genética , Instabilidade Genômica/fisiologia , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Mutação/genética
12.
Genome Res ; 30(11): 1583-1592, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33033057

RESUMO

Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant-pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.


Assuntos
Arabidopsis/genética , Resistência à Doença/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de RNAr , Expressão Gênica , Genes de Plantas , Genoma de Planta , Instabilidade Genômica
13.
J Exp Bot ; 71(17): 5160-5178, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32556244

RESUMO

Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.


Assuntos
Núcleo Celular , Cromatina , Nucléolo Celular , Regulação da Expressão Gênica , Plantas/genética
14.
Nucleic Acids Res ; 47(18): 9842-9856, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392988

RESUMO

To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.


Assuntos
Evolução Molecular , Filogenia , RNA/genética , Telomerase/genética , Telômero/genética , Allium/genética , Arabidopsis/genética , Asparagales/genética , Embriófitas/genética , Genoma de Planta/genética , Humanos
15.
Front Plant Sci ; 9: 177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503656

RESUMO

Thanks to recent innovative methodologies, key cellular processes such as replication or transcription can be visualized directly in situ in intact tissues. Many studies use so-called click iT chemistry where nascent DNA can be tracked by 5-ethynyl-2'-deoxyuridine (EdU), and nascent RNA by 5-ethynyl uridine (EU). While the labeling of replicating DNA by EdU has already been well established and further exploited in plants, the use of EU to reveal nascent RNA has not been developed to such an extent. In this article, we present a protocol for labeling of nucleolar RNA transcripts using EU and show that EU effectively highlights the nucleolus. The method is advantageous, because the need to prepare transgenic plants expressing fluorescently tagged nucleolar components when the nucleolus has to be visualized can be avoided.

16.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28483825

RESUMO

Ribosomal RNA genes (rDNA) have been used as valuable experimental systems in numerous studies. Here, we focus on elucidating the spatiotemporal organisation of rDNA replication in Arabidopsis thaliana To determine the subnuclear distribution of rDNA and the progression of its replication during the S phase, we apply 5-ethynyl-2'-deoxyuridine (EdU) labelling, fluorescence-activated cell sorting, fluorescence in situ hybridization and structured illumination microscopy. We show that rDNA is replicated inside and outside the nucleolus, where active transcription occurs at the same time. Nascent rDNA shows a maximum of nucleolar associations during early S phase. In addition to EdU patterns typical for early or late S phase, we describe two intermediate EdU profiles characteristic for mid S phase. Moreover, the use of lines containing mutations in the chromatin assembly factor-1 gene fas1 and wild-type progeny of fas1xfas2 crosses depleted of inactive copies allows for selective observation of the replication pattern of active rDNA. High-resolution data are presented, revealing the culmination of replication in the mid S phase in the nucleolus and its vicinity. Taken together, our results provide a detailed snapshot of replication of active and inactive rDNA during S phase progression.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Nucléolo Celular/metabolismo , Replicação do DNA/genética , DNA Ribossômico/genética , Fase S/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Raízes de Plantas/metabolismo , Transcrição Gênica
17.
Klin Mikrobiol Infekc Lek ; 24(3): 68-72, 2018 09.
Artigo em Tcheco | MEDLINE | ID: mdl-30747987

RESUMO

OBJECTIVES: Staphylococcus epidermidis and coagulase-negative staphylococci generally are important causative agents of hospital-acquired infections. A significant role in this process is played by their common ability to form biofilm, a highly organized community of microorganisms adhering to inert surfaces. The study aimed to determine the prevalence of these bacterial strains and their ability to form biofilm at the Department of Hemato-Oncology, University Hospital Olomouc. MATERIAL AND METHODS: Over a period of 12 months, samples of air and swabs from surfaces and staff members were collected. The samples were subjected to standard microbiology tests; coagulase-negative staphylococci were identified. Staphylococcus epidermidis strains were confirmed by polymerase chain reaction and subsequently tested for biofilm formation. RESULTS AND CONCLUSIONS: Coagulase-negative staphylococci were found in 81 samples, most commonly swabs from staff members. S. epidermidis accounted for 60 % of all positive results; it was most frequently isolated from surface swabs. Almost half of S. epidermidis strains were able to form biofilm. These strains were found in the environment characterized by cleanliness classes FED-STD-209E (USA) - 10 000 and FED-STD-209E (USA) - 100 000. Thus, they pose a risk for immunocompromised patients staying there. Since coagulase-negative staphylococci were also found in healthcare staff of the department, the staff members may play a key role in the transmission of these microorganisms to patients.


Assuntos
Biofilmes , Infecções Estafilocócicas , Staphylococcus epidermidis , Coagulase/metabolismo , Humanos , Prevalência , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia
18.
Plant Mol Biol ; 92(4-5): 457-471, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27531496

RESUMO

Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.


Assuntos
Arabidopsis/genética , DNA Espaçador Ribossômico/genética , Fator 1 de Modelagem da Cromatina/genética , Variação Genética/genética , Mutação , RNA Ribossômico/genética , Sequências Repetitivas de Ácido Nucleico/genética
19.
Plant J ; 88(3): 411-424, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27377564

RESUMO

Arabidopsis thaliana mutants dysfunctional in the evolutionarily conserved protein complex chromatin assembly factor-1 (CAF-1), which deposits the canonical histone H3 variant H3.1 during DNA synthesis-dependent chromatin assembly, display complex phenotypic changes including meristem and growth alterations, sensitivity to DNA-damaging agents, and reduced fertility. We reported previously that mutants in the FAS1 subunit of CAF-1 progressively lose telomere and 45S rDNA repeats. Here we show that multiple aspects of the fas phenotype are recovered immediately on expression of a reintroduced FAS1 allele, and are clearly independent of the recovery of rDNA copy-numbers and telomeres. In reverted lines, 45S rDNA genes are recovered to diverse levels with a strikingly different representation of their variants, and the typical association of nucleolar organizing region 4 with the nucleolus is perturbed. One of 45S rDNA variants (VAR1), which is silenced in wild-type (WT) plants without mutation history (Col-0 WT), dominates the expression pattern, whereas VAR2 is dominant in Col-0 WT plants. We propose an explanation for the variability of telomere and 45S rDNA repeats associated with CAF-1 function, suggesting that the differences in nuclear partitioning and expression of the rDNA variants in fas mutants and their revertants provide a useful experimental system to study genetic and epigenetic factors in gene dosage compensation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Genoma de Planta/genética , Telômero/genética , Telômero/metabolismo
20.
Plant J ; 85(3): 337-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26716914

RESUMO

Phylogenetic divergence in Asparagales plants is associated with switches in telomere sequences. The last switch occurred with divergence of the genus Allium (Amaryllidaceae) from the other Allioideae (formerly Alliaceae) genera, resulting in uncharacterized telomeres maintained by an unknown mechanism. To characterize the unknown Allium telomeres, we applied a combination of bioinformatic processing of transcriptomic and genomic data with standard approaches in telomere biology such as BAL31 sensitivity tests, terminal restriction fragment analysis, the telomere repeat amplification protocol (TRAP), and fluorescence in situ hybridization (FISH). Using these methods, we characterize the unusual telomeric sequence (CTCGGTTATGGG)n present in Allium species, demonstrate its synthesis by telomerase, and characterize the telomerase reverse transcriptase (TERT) subunit of Allium cepa. Our findings open up the possibility of studying the molecular details of the evolutionary genetic change in Allium telomeres and its possible role in speciation. Experimental studies addressing the implications of this change in terms of the interplay of telomere components may now be designed to shed more light on telomere functions and evolution in general.


Assuntos
Allium/genética , Cromossomos de Plantas/genética , Evolução Molecular , Telomerase/metabolismo , Telômero/genética , Allium/enzimologia , Sequência de Bases , Biologia Computacional , Genômica , Hibridização in Situ Fluorescente , Filogenia , Análise de Sequência de DNA , Telomerase/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...